A common molecular basis for exogenous and endogenous cannabinoid potentiation of glycine receptors.
نویسندگان
چکیده
Both exogenous and endogenous cannabinoids can allosterically modulate glycine receptors (GlyRs). However, little is known about the molecular basis of cannabinoid-GlyR interactions. Here we report that sustained incubation with the endocannabinoid anandamide (AEA) substantially increased the amplitude of glycine-activated current in both rat cultured spinal neurons and in HEK-293 cells expressing human α1, rat α2 and α3 GlyRs. While the α1 and α3 subunits were highly sensitive to AEA-induced potentiation, the α2 subunit was relatively insensitive to AEA. Switching a serine at 296 and 307 in the TM3 (transmembrane domain 3) of the α1 and α3 subunits with an alanine (A) at the equivalent position in the α2 subunit converted the α1/α3 AEA-sensitive receptors to sensitivity resembling that of α2. The S296 residue is also critical for exogenous cannabinoid-induced potentiation of I(Gly). The magnitude of AEA potentiation decreased with removal of either the hydroxyl or oxygen groups on AEA. While desoxy-AEA was significantly less efficacious in potentiating I(Gly), desoxy-AEA inhibited potentiation produced by both Δ(9)-tetrahydrocannabinol (THC), a major psychoactive component of marijuana, and AEA. Similarly, didesoxy-THC, a modified THC with removal of both hydroxyl/oxygen groups, did not affect I(Gly) when applied alone but inhibited the potentiation of I(Gly) induced by AEA and THC. These findings suggest that exogenous and endogenous cannabinoids potentiate GlyRs via a hydrogen bonding-like interaction. Such a specific interaction likely stems from a common molecular basis involving the S296 residue in the TM3 of the α1 and α3 subunits.
منابع مشابه
Delta9-tetrahydrocannabinol and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors.
Anandamide (AEA) and delta9-tetrahydrocannabinol (THC) are endogenous and exogenous ligands, respectively, for cannabinoid receptors. Whereas most of the pharmacological actions of cannabinoids are mediated by CB1 receptors, there is also evidence that these compounds can produce effects that are not mediated by the activation of identified cannabinoid receptors. Here, we report that THC and AE...
متن کاملCannabinoid potentiation of glycine receptors contributes to cannabis-induced analgesia.
Cannabinoids enhance the function of glycine receptors (GlyRs). However, little is known about the mechanisms and behavioral implication of cannabinoid-GlyR interaction. Using mutagenesis and NMR analysis, we have identified a serine at 296 in the GlyR protein critical for the potentiation of I(Gly) by Δ(9)-tetrahydrocannabinol (THC), a major psychoactive component of marijuana. The polarity of...
متن کاملنقش گیرندههای محیطی گلیسین در اخذ غذای وابسته به گیرندههای کانابینوئیدی
Background & Aim: Peripheral cannabinoid and glycine receptors are involved in food intake regulation. This study was conducted to investigate the possible interaction between these two receptors in regulating food intake. Methods: This is an experimental study which was conducted on forty male Wistar rats. In the first phase of the experiment, the rats simultaneously received intraperitonea...
متن کاملEffects of Combination of Intravenous Anesthetic Agents on Human Glycine Receptor evaluated by Artificial Neural Networks
Introduction: Intravenous general anesthetic agents are among the most important and widely used anesthetic drugs in the clinical practice. Many pharmacological studies have shown that potentiation of GABA and glycine on their receptors is the most plausible mechanism. Nevertheless, there is limited information on the effects of co-administration of two or more of these agents. However, expe...
متن کاملsiRNA knockdown of GPR18 receptors in BV-2 microglia attenuates N-arachidonoyl glycine-induced cell migration
UNLABELLED BACKGROUND Neurons are known to employ the endogenous cannabinoid system to communicate with other cells of the CNS. Endocannabioid signaling recruits microglia toward neurons by engaging cannabinoid CB2 and abnormal cannabidiol (Abn-CBD) receptors. The Abn-CBD receptor is a prominent atypical cannabinoid receptor that had been discriminated by means of various pharmacological and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 15 شماره
صفحات -
تاریخ انتشار 2012